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Some CKM SCRF Cavity Parameters

• Frequency: 3.9 GHz
• Cells/cavity: 13
• Cavity Length: 660 mm
• Qext = 6 x 107

• Bandwidth (f/ Qext): 65 Hz

• Main Injector Cycle Time: 3 sec
• Extracted Beam Duration per cycle: 1 sec
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Detuning Tolerance Target

• To keep RF power requirements low, it is desirable to keep 
the resonance frequency within ~ 1/10th of the bandwidth:

• From Finite Element Analysis models, ± 6.5 Hz 
corresponds to ± 3.1 nm in a 13-cell CKM cavity length.

• Failure to achieve this detuning tolerance target would 
require de-Qing the cavity further to increase its 
bandwidth, thus increasing the RF power cost.
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Detuning Contributions

• Lorentz Force Detuning
– The rf magnetic field in a cavity interacts with the rf wall current resulting 

in a Lorentz force which can cause a small deformation of the cavity 
shape resulting in a shift of the cavity resonant frequency.

– Important at high fields and for a pulsed accelerator such as TESLA.

• Microphonics Detuning
– Thin-walled, narrow-bandwidth superconducting cavities are 

sensitive to mechanical vibrations in the acoustic range from 
pumps, compressors, etc.
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Detuning Compensation

• Microphonics detuning is the main concern for CKM cavities. Lorentz
force detuning is less of a concern because of the relatively long OFF 
(2 sec), long ON (1 sec) operating cycle. It is more of a concern for 
pulsed cavities such as TESLA (950 µs flattop, 5 to 10 Hz repetition 
rate). 

• The stepping motor used for fine cavity tuning cannot respond fast 
enough for active microphonics detuning compensation.

• A fast Piezo Actuator has been demonstrated to be a good candidate 
for dynamic Lorentz force detuning compensation. This application 
relies on the high repetitive characteristics of this type of detuning.

• We are investigating using a Piezo Actuator for random microphonics 
detuning compensation.
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Piezo Actuator
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Piezo Actuators
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Piezo Actuator Selection

• For prototype studies, we selected the Piezo Actuator P-
206-40 from Piezosystem Jena. Some of its parameters are:
– Bare piezostack compatible with cryogenic operation in liquid helium.
– Voltage range: -10V to 150V
– Range of motion (room temperature): 80 µm. At 1.8 K: ~ 8 to 10 µm
– Length: 90 mm
– Stiffness: 12 N/µm
– Maximum Load: 1000 N 
– Capacitance: 8500 nF
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3-cell prototype instrumentation

• 3-cell prototype showing 
location of piezo element plus 
thermometry rings.

• Piezo element was used both as 
a sensor and as an actuator.
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3-cell Mechanical Resonance
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3-cell Mechanical Resonance FFT
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Microphonics FFT - High Amplitude
(~ ± 550 Hz)
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Microphonics FFT – Low Amplitude
(~ ± 100 Hz)

 



Ruben Carcagno TD HQ Presentation - 5/12/2003

Microphonics FFT – All Pumps OFF
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Microphonics – Dewar Support Modifications
(Measurements by T. Khabiboulline, April 2003)
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Piezo-RF Phase Error Transfer Function
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RF Phase Error With Piezo Actuation
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Manual Detuning Compensation
RF Phase Difference With and Without Piezo Actuator Compensation

12/9/02, 4:13 PM
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FFT of Uncompensated RF Phase Difference and Piezo Drive Signal
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Microphonics detuning was reduced from ± 375 Hz to ± 175 Hz. Manual 
compensation is difficult because frequency, amplitude, and phase must 
be adjusted. In addition, only one sine frequency was used to drive the 
piezo actuator.
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13-cell Vibration Measurements

 

• Piezo Actuator 
and Piezo Sensor 
at each end.

• Accelerometer at 
cells #1, #4, and 
#7. 

• Frequency sweep: 
20 Hz to 300 Hz 
in 20 seconds.
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13-cell Vibration Measurements Results
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13-cell Mechanical Resonances

 FFT Longitudinal Mode, Fixed Ends, accelerometer at mid-cell location
Sample Rate: 720 Hz
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13-cell cavity tuner
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13-cell cavity tuner cross section
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Piezo Tuner Control

• Transfer Function measurements show a large number of modes with a 
large phase shift of several hundred degrees over the frequency range 
of interest. This makes feedback for microphonics control using the RF 
signal not possible with the piezo actuator.

• We are investigating applying adaptive feedforward control with 
algorithms typically used for noise or vibration cancellation such as the 
LMS filter.

• The CKM cavity operating cycle (1 sec ON, 2 sec OFF) would make it 
possible for these types of algorithms to adapt to microphonics 
perturbations during the beam OFF phase.
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Adaptive Feedforward Control

• LMS Algorithm

xn Adaptive LMS F IR  
F ilter  

yn S en 

dn 

The output of the filter is: 
y(n)=wT(n) x(n)

Where w(n) = [w0 w1 … wM-1]
T is the weight vector at time index n and x(n) = [x(n) x(n-1) … x(n-M+1)]T is the 

. data vector of the M most recent input samples. The weight vector is adjusted each iteration according to equation:

w(n+1)=w(n) + 2u x(n)e(n)

Where u is a convergence factor the value of which affects the amount the weight vector is altered on each iteration.
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LMS applied to CKM cavity
(preliminary)

xn
Adaptive LMS FIR 

Filter
y n

en

dn = 3.9 GHz

Piezo Cavity RF phase 
difference

RF phase 
difference 
sample

(taken while LMS is 
OFF and “replayed”)

• This approach assumes the microphonics spectrum remains more or less 
constant between samples.

• Samples of the microphonics spectrum can be taken while the beam is OFF and 
then replayed to provide Xn. However, RF power is required for this 
measurement.
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Active Noise Cancellation with Adaptive LMS Filter
Concept Demonstration

• The LMS filter was 
implemented to cancel noise 
from a source speaker in a duct 
using a compensating speaker.

• The algorithm was programmed 
in a real-time VxWorks 
operating system. The signals 
were acquired with a VME-
based data acquisition 
hardware.
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Noise Cancellation Results
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Noise Cancellation
Adaptation Details

 



Ruben Carcagno TD HQ Presentation - 5/12/2003

Path Forward

• Demonstrate automatic microphonics detuning compensation in the 3-
cell prototype using an FPGA board programmed with the adaptive 
feedforward LMS algorithm.

• 13-cell cavity measurements in operating conditions (e.g., mechanical 
resonances, piezo-rf transfer function, uncompensated microphonics)

• Characterization of the high-load piezo actuator to be used in the 13-
cell cavity.

• 13-cell cavity measurements automatic compensation: strategy, fine-
tune algorithm, etc. 

• Packaging for production.
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Cavity Thermometry - General
• Cavity surface thermometry is used to study local distribution of 

various types of energy losses and identify defects.
• Main types of cavity loss mechanisms:

– Thermal breakdown (related to surface magnetic field)
– Field emission (related to surface electric field)

• The temperature sensing element is usually Allen-Bradley carbon 
resistors encased in epoxy to prevent excessive cooling of the 
thermometer by the helium bath.

• Fixed or rotating arrays of thermometers have been used.
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Example: 1.5 GHz Cavity
(Cornell)
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CKM Cavity Thermometry
• Small Iris size (30 mm) makes it difficult to use the general approach 

used in other cavities with Allen-Bradley carbon sensors. A smaller 
CERNOX sensor was used instead.

• The sensor was attached with epoxy to a spring-loaded G-10 stick, and 
an Indium half-sphere was glued to the tip of the CERNOX sensor and 
covered with Apiezon grease prior to installation to improve thermal 
contact. 
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CKM Cavity Thermometry
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Thermometry DAQ System
• A fast  (KHz) CERNOX 

readout system is required to 
capture surface T during cavity 
quench.

• Available systems (commercial 
or in-house) were too slow (a 
few samples per second)

• We designed a system based on 
a Keithley precision current 
source, an in-house amplifier 
designed for this application, 
and a 16-bit, 100 kHz ADC 
card.
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In-house amplifier
• To avoid self-heating, CERNOX RTDs 

must be driven with a very low current 
(< 0.5 uA).

• The resulting RTD voltage is typically a 
few mV. Filtering and amplification is 
needed before digitizing the signal.

• To avoid errors, an ultra low input bias 
current instrumentation amplifier ( < 3 
fA) such as the INA116 is required.
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Self-Heating Study
Self-Heating Study

(RTD7 Resistance at T= 1.78K for different excitation currents)
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Cavity Quench Thermometry

Quench Operation
(10 KHz data acquistion)
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Cavity cw thermometry at two different polarizations

CW Data, Polarization Mode I, 0.5 uA RTD current
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Path Forward

• We need to scale up the thermometry system for 
the 13-cell cavity.

• Software for automatic data reduction and analysis 
has to be written.


